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A theoretical model based on a quasi-one-dimensional formulation is developed which
allows determination of the shock stand-off distance at the stagnation point of blunt
bodies in hypersonic non-equilibrium flows. Despite the simple ideal dissociating gas
model implemented in the theoretical approach, it gives insight into the main physics
governing the shock stand-off problem. More detailed and precise data are obtained
by a numerical simulation where vibrational and chemical relaxation processes as well
as their interactions are taken into account. The physical modelling of these processes
is based on a kinetic approach and on a generalized Chapman–Enskog method of
solving the Boltzmann equation. Explicit formulae for rate constants and vibrational
energy consumption are derived and incorporated into the general conservation
equations. Good agreement between theoretical, numerical and experimental results
is achieved which ensures a reliable and mutual validation of the different methods.

1. Introduction
A spacecraft entering the atmosphere at orbital speed encounters extremely high

gas temperatures behind the bow shock and especially in the stagnation region. These
high temperatures of the order of several thousand degrees are due to the conversion
of kinetic flow energy into thermal energy by shock compression leading to strong
molecular collisions. According to the arguments of statistical mechanics, some of
these collisions lead to the excitation of higher modes of the vibrational energy
and to a variety of chemical reactions where the constituents differ for different gas
compositions. Dominant for the stagnation flow field for typical re-entry conditions
are dissociation reactions of the molecules. Depending on the reaction and excitation
rates, these thermal and chemical processes may take place in nearly frozen, non-
equilibrium or nearly equilibrium conditions.

One of the important parameters characterizing the blunt-body flow field in the
stagnation region is the shock stand-off distance. This parameter is often employed
for validation purposes of numerical methods as well as for non-reactive and reactive
gases. Since for high Mach number flows the shock is very close to the body, i.e. the
stand-off distance is small with respect to a characteristic body length, its experimental
determination is difficult and relatively large errors have to be accepted. Therefore,
any reliable data of the stand-off distance determined by theoretical and/or numerical
solutions is of great significance in the discussion of this physical phenomenon. In
general, theoretical methods do not provide a solution of the whole flow field, but
often enable recognition and to study of the influence of the main physical parameters
of the problem considered. On the other hand, numerical solutions provide detailed
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knowledge of the whole flow field and therefore of all flow parameters for the
particular free-stream and boundary conditions chosen. Therefore, in this paper both
numerical simulations and a theoretical approach are used to allow a much deeper
understanding of the physical phenomena relevant for the problem of the shock
stand-off distance in reactive flows.

For perfect gas flow, many theoretical and numerical solutions have been published.
Based on the well-known constant density concept, Hayes & Probstein (1959) gave
solutions for the cylinder and flow around a sphere. Of course, for reacting flows
the reactions taking place behind the bow shock alter the density field significantly,
and so the assumption of a constant density in the shock layer is not well suited to
this flow regime. A variety of inverse methods have been applied to the problem of
a flow with a detached shock at a blunt nose. For the inverse problem the shape
of the shock is given and the shape of the body and the details of the flow field in
the shock layer are determined. The main idea is that, if the shape of the detached
shock is prescribed, the values of the flow variables just behind the shock can be
found easily from oblique shock relations. This also holds for the gradients of flow
parameters tangent to the shock. Based on these boundary values, the flow field
between shock and body is represented by appropriate power series expansion, as
was done e.g. by Lin & Shen (1951). Another approach has been given by Zlotnick &
Newman (1957) who developed an inverse method by rearranging the conservation
equations in shock-oriented orthogonal curvilinear coordinates such that they could
be successively solved for the values of the derivatives normal to the shock. Again,
the inflow is given by the shock conditions. The same principle has been applied by
Van Dyke (1958) whose solution for the stand-off distance in perfect gas conditions is
still used today as reference data. The determination of the subsonic part of the flow
field for the inverse formulation is governed by an elliptic partial differential equation
and is carried out as an initial value problem with Cauchy data, i.e. the value of a
function, and of its normal derivative specified along the shock wave. Though from
a mathematical point of view a Cauchy problem for an elliptic differential equation
is ill-posed resulting in general in numerical problems, the accuracy achieved with
these methods is very high. During the computational procedure, the shock shape
is successively changed until the desired body shape is achieved. The main idea of
the theoretical approach described in § 2 is similar to the concept of the inverse
problem.

For non-equilibrium flow, the inverse method was first applied by Lick (1960) and
has been extended for more realistic chemical kinetics of high temperature air by Hall,
Eschenroeder & Marrone (1962). Hornung (1972) applied the numerical methods of
Freeman (1958) based on the ideal dissociating gas model and of Garr & Marrone
(1957) including vibrational relaxation and the kinetics of a mixture of gases to study
the non-equilibrium flow over spheres and cylinders. In that paper Hornung showed
that the shock stand-off distance also depends on a reaction rate parameter which
describes the gradient of the dissociation level immediately behind the shock. For
frozen flow, i.e. low reaction rate parameters, as expected, the stand-off distance is
larger than for equilibrium flow, characterized by a high reaction rate parameter.
Wen & Hornung (1995) extended these previous results by an approximate theory
which relates the dimensionless shock stand-off distance to a modified reaction rate
parameter valid for more general gas mixtures. It is important to note that based on
this theoretical approach assuming linear density profiles between shock and body,
Wen & Hornung showed that the shock stand-off distance not only depends on the
reaction rate parameter but also on the density ratio between shock and body as
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additional parameter. For frozen and equilibrium flow this has also been found by
Olivier (2000) who gave an analytical solution for the stand-off distance based on the
solution of the continuity equation in a quasi-one-dimensional formulation.

In the first part of this paper, this theoretical solution is extended to the non-
equilibrium flow regime and compared with numerical results. As expected, the
non-equilibrium processes increase the complexity of the conservation equations so
that even for the quasi-one-dimensional approach an analytical solution is no longer
possible. However, the method described is still very simple and yields a thorough
understanding of the relevant physical phenomena.

The second part of the paper deals with the numerical determination of the
hypersonic flow field around blunt bodies. This is based on two essential features.
The first consists of using a realistic physical model taking correctly into account the
physical phenomena inherent in high-enthalpy flows such as vibrational excitation,
dissociation and various reactions having characteristic times similar to the reference
flow time. The modelling of these phenomena and of the associated non-equilibrium
flows has been the subject of many studies, so that the main characteristics of these
flows are now well-known. Accordingly, much data exists for the translation/vibration
(TV) and the vibration/vibration (VV) transition probabilities and corresponding
relaxation times as well as the reaction rate constants and also the coupling between
vibrational excitation and chemical reactions. Very few complete analyses of non-
equilibrium flows are available however. That has motived the first and third author
to develop such a systematic study for pure gases as well as for mixtures. This analysis
is based on a kinetic approach and on the Chapman–Enskog method for solving the
Boltzmann equation, taking into account a hierarchy of characteristic times of various
processes. Because of the variable time scales of these processes, the Chapman-Enskog
procedure is non-unique and depends on the physical conditions. Thus, a generalized
Chapman-Enskog method is developed, allowing the description of general cases of
vibrational and chemical non-equilibrium. The only assumptions remaining are that
the characteristic time of vibrational relaxation remains shorter than or equal to the
chemical time and that regions of steep gradients are excluded from consideration.
Explicit formulae for rate constants and vibrational energy consumption are derived
and incorporated into the general conservation equations for species and vibrational
energy, thus closing the Navier–Stokes set of equations for non-equilibrium flow.
The numerical method used to solve this set of equations is completely implicit,
second-order accurate in time and space, using a Gauss–Seidel line relaxation scheme.
A time-developing solution is obtained up to the required steady state. Finally,
the computed values of the shock stand-off distance over hemispherical bodies are
compared with available experimental data and with values from the theory presented
in the first part of the paper.

A comparison of experimental, numerical and theoretical data shows that they
are consistent. Furthermore, they complement each other and allow a thorough
discussion of the important physical phenomena relevant for the shock stand-off
distance in non-equilibrium flow conditions.

2. Theoretical modelling of the shock stand-off distance in non-equilibrium flow
Because some relations and definitions reported by Wen & Hornung (1995) and

Olivier (2000) are essential for the understanding of the following, the most important
ones are briefly summarized.



170 N. Belouaggadia, H. Olivier and R. Brun

1.0
2 4 6 8 10 12 14 16 18 20

0.8

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.219 0.18 0.172 0.170 0.169

M∞

M∞

γ = 1.4
R

Δ
R

ε = ρ∞ /ρs

Heberle, Wood, Gooderum
Oliver
Crawford, McCauley

Sugimoto
Charters

Laderburg, Winckler, Van Voortis
Rainey
Van Dyke, numerical solutions

Lobb approximation
Lighthill, constant density theory

Lobb experiment

Figure 1. Comparison of different experimental and theoretical data for the shock stand-off
distance on a sphere. The symbols correspond to experimental data used by van Dyke (1958)
to check his numerical solution, with the exception of the diamond, which is from Lobb (1964).

The numerical solution of Van Dyke (1958) for a non-reactive gas has been
approximated by Lobb (1964) who gave the well-known relation

�f r

D
= 0.41

ρ∞

ρs

(2.1)

with � the stand-off distance, D the sphere diameter and ρs the density immediately
behind the shock. Figure 1 shows a comparison of Van Dyke’s numerical solution,
the approximation given by Lobb (2.1) and experimental data used by Van Dyke to
check his solution. Also, the experimental results of Lobb are added; he measured
the shock stand-off distance on spheres in a two-stage light gas gun for the high
Mach number range. It is seen that the numerical solution of Van Dyke fits very
well with the experimental data for the low supersonic Mach number range up
to about 8. This is not surprising, because the experimental data referenced by
Van Dyke as well as Van Dyke’s numerical solution cover the range of perfect gas
behaviour. It is also clear that the approximation given by Lobb fits well to the data
for a Mach number range from 2 to 8 but not for higher Mach number or flight
velocity range. That is also not surprising, because as has been shown by Wen &
Hornung (1995), the simple relation (2.1) given by Lobb is not suited to cover high-
temperature effects. These become evident in the experimental data of Lobb for the
high Mach number range. As expected, these effects lead to a reduction of the shock
stand-off distance compared to the perfect gas data. Newer experiments show that
quantitatively the data given by Lobb (1964) might have been influenced by some
experimental shortcomings resulting in an error of a few percent in the stand-off
distance. However, the qualitative behaviour is well described. The data presented in
figure 1 as well as more recently published experimental and numerical data, show
that the evaluation of the shock stand-off distance in reacting flows needs more
comprehensive models and correlations than used in the past.
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Concerning the modelling, Wen & Hornung (1995) extended previous results
of Hornung (1972) by an approximated theoretical approach which relates the
dimensionless shock stand-off distance

�̃ =
�

D

ρs

ρ∞
(2.2)

to a reaction rate parameter of the form

Ω̃s =

(
dρ

dt

)

s

D

ρsu∞
, (2.3)

where the index s indicates conditions immediately behind the shock. This
approximate theory assumes piecewise-linear density profiles between the shock and
the body. From the specific density profile an average density value ρav is determined
which is related to the shock stand-off distance by the ansatz (Wen & Hornung 1995)

�̃ = 0.41
ρs

ρav

. (2.4)

In this approach the influence of the reactive flow between shock and body on the
stand-off distance is taken into account by the averaged value of the density profile.
The solution of the corresponding equation for the shock stand-off distance shows
its dependence not only on the reaction rate parameter but also on the density ratio
between shock and body. This influence becomes dominant for flow conditions in the
shock layer which are close to equilibrium.

The aim of the theoretical method presented in this paper is to determine the shock
stand-off distance for a sphere and cylinder for the whole non-equilibrium flow regime,
ranging from frozen to equilibrium flow, and so this method is based on the solution
of the conservation equations which are simplified in a suitable manner. Compared to
the analytical solution given by Olivier (2000) for frozen and equilibrium flow, some
previous restrictions can be removed and the formulation presented is more accurate
and valid in a wider range.

The continuity and impulse equations in the circumferential direction for cylindrical
coordinates are given by

∂

∂r
[ρvr(r sin φ)η] +

∂

∂φ
[ρu(r sin φ)η] = 0 (2.5)

and

ρv
∂u

∂r
+

ρu

r

(
∂u

∂φ
+ v

)
+

1

r

∂p

∂φ
= 0, (2.6)

where η = 0 for a plane flow and η = 1 for a flow of rotational symmetry. These
equations are non-dimensionalized using

p̄ =
p

pb

, ρ̄ =
ρ

ρb

, ū =
u

uref

, v̄ =
v

uref

, h̄ =
h

htot

,

T̄ =
T

Tref

, Θ̄d =
Θd

Tref

, r̄ =
2r

D
, �̄ =

2�

D

⎫
⎪⎪⎬
⎪⎪⎭

(2.7)

with

htot = RA2
Tref =

u2
ref

2
≈ u2

∞
2

.

An inviscid flow is considered for this theoretical model, i.e. the results are valid
for flow conditions where in particular the boundary layer around the body has
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Figure 2. Coordinate system of the streamtube model.

no significant influence on the stand-off distance. This is usually the case for the
hypersonic flow regime of interest for which non-equilibrium effects are important.

As is usual for hypersonic free-stream conditions, the contribution of the static
enthalpy to the total enthalpy is neglected. A normalized coordinate r∗ = (r̄ − 1)/�̄ is
introduced which varies between 0 at the body and 1 at the shock. In the following,
the index b denotes conditions at the body surface and s values immediately behind
the shock. It is assumed that the flow across the shock is frozen. For the solution of the
conservation equations a quasi-one-dimensional approach is utilized which describes
the flow in the close vicinity of the stagnation streamline. In other words, along the
stagnation streamline a streamtube of infinitely small cross-section is considered (see
figure 2). It is the continuity condition for this streamtube which from a physical
point of view yields the shock stand-off distance.

After differentiating and introducing the following approximations and conditions
usual for the flow in the vicinity of the stagnation streamline:

sin φ ≈ φ, ū = φ
∂ū

∂φ
,

∂ρ̄

∂φ
= 0 , (2.8)

the non-dimensionalized continuity equation is given by

v̄

ρ̄

∂ρ̄

∂r∗ +
∂v̄

∂r∗ + (η + 1)
�̄v̄

1 + �̄r∗ + (η + 1)
�̄

1 + �̄r∗
∂ū

∂φ
= 0 , (2.9)

where in the following η = 0 describes the flow across a cylinder and η = 1 the flow
over a sphere. The non-dimensionalized impulse equation follows from (2.6) and the
approximations given in (2.8),

ρ̄v̄
∂

∂r∗

(
∂ū

∂φ

)
+

�̄

1 + �̄r∗ ρ̄
∂ū

∂φ

(
∂ū

∂φ
+ v̄

)
+

2�̄

1 + �̄r∗
pb

ρbhtot

1

φ

∂p̄

∂φ
= 0 , (2.10)
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where for the stagnation streamline the pressure gradient ∂p̄/∂φ is zero, but not
the term (1/φ) ∂p̄/∂φ which is a measure of the second derivative of the pressure
distribution in the circumferential direction. For simplicity, in this theoretical model
an ideal dissociating gas according to Freeman (1958) has been assumed, i.e. the
degree of dissociation α is given by

dα

dt
= CT νρ

[
(1 − α) e−Θd/T − ρ

ρd

α2

]
, (2.11)

where the first term in the brackets describes the dissociation and the second one the
recombination reaction. In non-dimensional form this equation is

dα

dr∗ = Λ
ρb

ρs

ρs

ρ∞

ρ̄�̄

|v̄| T̄ ν

[
(1 − α) e−Θ̄d/T̄ − ρ̄

ρb

ρs

ρs

ρd

α2

]
, (2.12)

where the constant Λ is given by

Λ = CT ν
ref

ρ∞D/2

uref

, . (2.13)

Physically, this represents a kind of reaction rate parameter which determines how
fast the reaction rate changes along the stagnation streamline. The parameter Θ̄d in
(2.12),

Θ̄d =
Ediss RA2

/K

u2
ref /2

, (2.14)

represents the ratio of the dissociation energy of one molecule A2 to its kinetic energy
in the free stream. It will be seen that this dissociation energy parameter has a
significant influence on the non-equilibrium flow between shock and body. To close
the set of equations, an equation of state and the energy conservation equation are
necessary. For the ideal dissociating gas the non-dimensionalized equation of state is
given by

ρ̄ =
p̄

(1 + α) T̄

pb

ρbhtot

, (2.15)

where the factor including the reference conditions follows from the conditions at the
stagnation point

pb

ρbhtot

= (1 + αb) T̄b. (2.16)

The non-dimensionalized temperature at the stagnation point can be found from the
enthalpy of the ideal dissociating gas

h = (4 + α) RA2
T + α RA2

Θd, (2.17)

which for the stagnation point leads to

T̄b =
1 − αbΘ̄d

4 + αb

. (2.18)

The temperature along the stagnation streamline is determined by the conservation
of the total enthalpy

T̄ =
1 − α Θ̄d − v̄2

4 + α
, (2.19)
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so that the density follows from (2.15):

ρ̄ =
4 + α

1 + α

1 + αb

4 + αb

(1 − αb Θ̄d)p̄

1 − α Θ̄d − v̄2
. (2.20)

The system of the five equations (2.9), (2.10), (2.12), (2.19) and (2.20) describing the
quasi one-dimensional model of the stagnation point flow contains seven unknowns
ρ̄, p̄, T̄ , α, v̄, ∂ū/∂φ and (1/φ) ∂p̄/∂φ. The shock stand-off distance �̄ follows from
the solution of this set of equations with the boundary condition that the velocity v̄

must be zero at the stagnation point. Therefore, in order to solve the set of equations,
two parameters have to be prescribed by introducing suitable approximations. On
one hand, the need for this results from the quasi one-dimensional approach. On the
other hand, this model avoids the solution of a two-dimensional flow problem which
from an analytical and/or numerical point of view is much more complicated than
for the one-dimensional case. But, as is well known, the accuracy achieved by a multi-
dimensional approach strongly depends on the method of solution, numerical issues,
etc. For certain phenomena the multi-dimensional approach is not necessarily more
accurate than a one-dimensional formulation, particularly if the one-dimensional
model is adapted to the phenomenon of interest and necessary assumptions are
introduced in a way that their influence on the solution is as weak as possible. The
smallest variations along the stagnation streamline show the non-dimensionalized
pressure p̄ and the derivative term in (1/φ) ∂p̄/∂φ. The pressure along the stagnation
streamline typically changes not more than 5 % to 10 %. Therefore, in this flow
model as first approximation the pressure is set to be constant. As shown in the
following, the value of the term (1/φ) ∂p̄/∂φ in the tangential momentum equation
changes between the stagnation point and shock by a factor of 2/(γ + 1)[1 − ∂β/∂φ],
where γ is the ratio of the specific heats for frozen flow across the shock. For a gas
such as air, the variation of this term amounts to 25 % which is much less than the
variation of the other variables. Therefore, as second approximation the variation of
this parameter between shock and body is assumed to be linear. Knowing the values
of this parameter at the shock and at the body and also the boundary conditions of
the other variables, the set of equations given above can be solved to finally determine
the shock stand-off distance.

The determination of the gradient term ((1/φ) ∂p̄/∂φ)s as one boundary condition
is based on the oblique shock relation

ps

p∞
= 1 +

2γ

γ + 1

(
M2

∞ sin2 σ − 1
)
, (2.21)

where σ is the shock angle and M∞ the free-stream Mach number. Since the flow
is assumed to be frozen across the shock, this relation holds also for reactive flow
conditions. Replacing the shock angle σ by σ = β − φ + π/2 (see figure 2) leads to

(
∂p

∂φ

)

s

= − 4γ

γ + 1
M2

∞p∞(β − φ)

(
∂β

∂φ
− 1

)
(2.22)

which finally gives with (2.7) and β = 0◦ for the stagnation streamline
(

1

φ

∂p̄

∂φ

)

s

= − 8

γ + 1

[
1 − ∂β

∂φ

]
ρ∞

ρs

ρs

ρb

ρbhtot

pb

. (2.23)

The boundary condition of the pressure gradient term at the stagnation point is
determined by the assumption of a Newtonian pressure distribution along the body
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which represents an approximation of sufficient high accuracy for hypersonic flow
conditions, i.e.

p − p∞ = 2 q∞ cos2 φ. (2.24)

Following the same procedure as for (2.23) and with p � p∞ it follows that
(

1

φ

∂p̄

∂φ

)

b

= −4
ρ∞

ρs

ρs

ρb

ρbhtot

pb

. (2.25)

Knowing the two values given by (2.23) and (2.25) which only differ by about 25 %,
the pressure gradient term in (2.10) is approximated by a linear distribution between
shock and body as stated above. Additionally to the pressure gradient term, the
tangential velocity gradient just behind the shock and at the stagnation point have to
be prescribed as a boundary condition. At the shock the tangential velocity gradient
follows from the tangential velocity component which is conserved across the shock,

u = u∞ sin (φ − β). (2.26)

For the stagnation streamline with φ = β = 0◦ this leads to
(

∂ū

∂φ

)

s

= 1 −
(

∂β

∂φ

)

s

. (2.27)

The tangential velocity gradient at the stagnation point follows from the impulse
equation (2.10) for ρ̄ = 1 and v̄ = 0:

(
∂ū

∂φ

)

b

=

√
−1

2

pb

ρbhtot

(
1

φ

∂p̄

∂φ

)

b

. (2.28)

The tangential pressure gradient in (2.28) is given by (2.25) which finally leads to
(

∂ū

∂φ

)

b

=

√
2

ρ∞

ρs

ρs

ρb

. (2.29)

It is not surprising that the tangential velocity gradient inversely depends on the
density at the stagnation point, because from mass conservation for the stagnation
line streamtube it follows that the higher the density the lower the tangential velocity,
i.e. the lower the tangential velocity gradient. The mass flux leaving the stagnation
region is determined by the density and the tangential velocity component.

As a further boundary condition the degree of dissociation at the stagnation point
αb has to be determined. For the flow model considered, the flow at the stagnation
point is in equilibrium. This holds regardless of the magnitude of the reaction rate
parameter since the velocity at the stagnation point is zero and therefore, the residence
time approaches infinity. In this case, the term in the brackets of (2.12) is equal to
zero from which the temperature at the stagnation point can be deduced:

T̄b = Θ̄d ln−1

(
ρd

ρs

ρs

ρb

1 − αb

α2
b

)
. (2.30)

From the conservation of the total enthalpy, a second equation follows for the
temperature (see (2.18)):

T̄b =
1 − αbΘ̄d

4 + αb

, (2.31)
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which gives together with (2.30) a relation between the degree of dissociation at the
body and the non-dimensional dissociation energy:

Θ̄d = ln

(
ρd

ρs

ρs

ρb

1 − αb

α2
b

)[
4 + αb + αb ln

(
ρd

ρs

ρs

ρb

1 − αb

α2
b

)]−1

. (2.32)

From (2.20) the density ratio between shock and body is given by

ρs

ρb

=
4(1 − αbΘ̄d)(1 + αb)

4 + αb

, (2.33)

where it has been assumed for simplicity that there is no free-stream dissociation, p̄

is equal to 1 as stated above and v̄2 � 1. The validity of p̄ = 1 and v̄2 � 1 has been
proven by numerous numerical and theoretical solutions for a hypersonic stagnating
flow around blunt bodies. As expected, equations (2.32) and (2.33) show that the
density ratio between shock and body, the degree of dissociation at the body αb,
and for a given gas the total enthalpy of the flow occurring in the denominator of
the non-dimensional dissociation energy Θ̄d , are not independent. Equations (2.32)
and (2.33) are solved by prescribing one of the three parameters, where in this case
the density ratio between shock and body has been chosen as free parameter in
accordance with the model of Wen & Hornung (1995). In this case, the degree of
dissociation αb and the non-dimensional dissociation energy follow from (2.32) and
(2.33). The evaluation of these two equations show that as expected the establishment
of a large density ratio ρb/ρs between body and shock requires a high total enthalpy
of the flow, corresponding to a small non-dimensional dissociation energy Θ̄d . For a
given gas the parameter Θ̄d describes the total enthalpy of the flow, and so it yields
the relation between the density ratio ρs/ρb used as a parameter in the theory and the
total enthalpy used as a parameter for the experimental data as in the following. With
increasing density ratio ρb/ρs , the rate of dissociation αb at the stagnation point also
increases. It is interesting to note that for a given value of the parameter ρd/ρs , such
as ρd/ρs = 107 as proposed by Lighthill, from equations (2.32) and (2.33) a solution
follows only for density ratios ρb/ρs larger than 0.5. This means that for a particular
chemical model the range of density variation between shock and body is limited.

It is quite often stated that recombination reactions take place in a very narrow
region close to the body surface and therefore are of no significant importance for
the computation of global flow field phenomena such as the stand-off distance. The
ideal dissociating gas model nicely shows that this statement has to be handled with
care. This is also the case for more complicated chemical models. Neglecting the
recombination reaction in (2.12) means that at the stagnation point the first term
in the brackets has to go to zero which is only possible for αb = 1, i.e. complete
dissociation takes place at the stagnation point. But in this case Θ̄d � 1 or Tref � Θd

which follows from (2.18). The characteristic dissociation temperature Θd for oxygen
is 59 500 K, and for nitrogen is 113 000 K. This makes clear that for a gas model
which does not allow recombination reactions, the assumption of an equilibrium
flow at the stagnation point requires total flow enthalpies htot = RA2

Tref magnitudes
with unreasonable. This is based on the requirement of complete dissociation at the
stagnation point. Corresponding to this, the temperature at the stagnation point is
also much higher than for the case with recombination reactions. In this case, the
erroneous boundary conditions at the stagnation point may not only influence the
flow field close to the surface but also further upstream in the subsonic stagnation flow
region, probably causing larger errors than a flow model including recombination.
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Figure 3. Dissociation level, density ratio, axial velocity and tangential velocity gradient along
the stagnation line for sphere flow, body r∗ = 0, shock position r∗ = 1, ρs/ρ∞ = 6, ρs/ρb =
0.7.

3. Results of the theoretical model
For the example of a sphere and for the density ratio ρs/ρb = 0.7 between shock

and body, figure 3 shows the profiles of the degree of dissociation, the density, the
axial velocity and the tangential velocity gradient. The stagnation point on the body
is located at r∗ = 0 and the shock position is at r∗ = 1. The reaction rate parameter
Ω̃s is defined in (2.3). For the ideal dissociating gas model and for the case of no
free-stream dissociation α∞ = 0, this reaction rate parameter can be written as

Ω̃s =

(
dρ

dt

)

s

D

ρsu∞
= (2 Θ̄d − 3/2)Λ e−4Θ̄d (3.1)

which, as expected, is directly proportional to Λ, defined in (2.13). It is evident in
figure 3 that within a short distance behind the shock the degree of dissociation, the
density and the other flow parameters approach their equilibrium value much faster
the higher the reaction rate parameter. It is also obvious that independently from
the reaction rate parameter at the stagnation point, the flow is locally in equilibrium.
This leads for nearly frozen conditions to a very narrow region close to the stagnation
point in which the flow comes to equilibrium. The analytical solution for the shock
stand-off distance in frozen and equilibrium flow derived by Olivier (2000) assumed
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Figure 4. Approximation of real density profile by piecewise-linear profile.

a linear behaviour of the tangential velocity gradient between shock and body. In
figure 3, it is clear that this assumption approximates the real behaviour quite well.

In order to compare the solution of this method with that given by Wen & Hornung
(1995), an equivalent reaction rate parameter has to be determined from a density
profile which is based on a piecewise-linear density distribution as in the approach
of Wen & Hornung (1995). Choosing the density gradient immediately behind the
shock from the real profile for determining the reaction rate as done in (3.1) would
result in an overestimation of the reaction rate compared to the model of Wen &
Hornung (1995) (see figure 4). Therefore, according to Wen & Hornung (1995) the
actual density profile is approximated by piecewise-linear sections. The condition of
identical areas below the approximated and the real profile ensures a unique solution.
The equivalent reaction rate parameter Ω̃ then follows from

Ω̃ =
D

ρs u∞

(
dρ

dt

)

lin

= 2

(
ρ∞

ρs

)2[
d(ρ/ρ∞)

dr̄

]

lin

. (3.2)

In figure 5 the scaled shock stand-off distance (2.2) is plotted versus the reaction rate
and the additional parameter given by the density ratio between shock and body. For
the solution of the governing equations given above, the shock curvature parameter
∂β/∂φ for the stagnation streamline must be known. This value has been determined
by adapting the solution for the frozen case to the value given by Lobb (1964),
i.e. �̃ = 0.41 which for non-reactive hypersonic flow approximates very accurately
the numerical solution of Van Dyke (1958), see figure 1. The value of the shock
curvature parameter thus determined is to 0.11 and has been kept constant for the
whole reactive flow regime. The value 0 would describe a perfect circular shock
shape at the stagnation point. In this case, the non-dimensionalized shock stand-
off distance is �̃ = 0.4. The small deviation between this value and that resulting
from Van Dyke’s solution (�̃ = 0.41) demonstrates the small correction by the shock
curvature parameter.

In spite of the quite different models applied, the agreement between the approach of
Wen & Hornung (1995) and the present method is very good. Of course, the stretching
of the curves shown in figure 5 by the reaction rate parameter Ω̃ depends on the
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evaluation of an equivalent density gradient approximating the real density profile
between shock and body by a piecewise-linear one. For comparing experimental
or numerical results with those given by the theory, in principle the reaction rate
parameter can be determined for a density gradient at any position between shock
and body. The largest relative deviation between the results of the theory presented
and Wen & Hornung’s theory is 5 % and occurs for the lowest density ratio for
equilibrium flow conditions. This quite good agreement achieved between the present
method, utilizing the ideal dissociating gas model, and Wen & Hornung’s model which
does not require the choice of any gas model, indicates that within the given accuracy
the details of the gas model considered have little influence on the description of the
shock stand-off phenomenon, provided that the most important reactive mechanisms
like dissociation, recombination, dependence of reaction rate on local flow properties,
etc. are captured. In the following, this is also demonstrated by comparing the
numerical solution for air in fully thermal and chemical non-equilibrium and the
result of this theory. In this case, the deviation between the theoretical model here
presented assuming the ideal dissociating gas model, and the numerical solution for
reactive air 7 %. This deviation becomes even smaller if in the numerical solution
the physical modelling of the high-temperature phenomena is adapted to the ideal
dissociating gas model. In this case, the deviation is only 2 %.

In contrast to the approach of Wen & Hornung (1995) the model presented here
does not require a fitting of different solutions depending on the value of the reaction
rate parameter. A uniform solution is achieved that is valid for the whole flow
regime ranging from frozen up to equilibrium flow. As expected and discussed by
Wen & Hornung (1995) for increasing reaction rate parameter, i.e. approaching the
equilibrium flow regime, the shock stand-off distance becomes smaller with increasing
density at the stagnation point or decreasing density ratio ρs/ρb. In this case, the
average density between shock and body is larger, resulting in a smaller shock
stand-off distance. From physical reasoning it is also expected that the strongest
dependence of the stand-off distance on the reaction rate parameter occurs for the
non-equilibrium regime, i.e. in figure 5 for reaction rate parameters ranging from 0.1
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to 10. In accordance with the features of reactive systems, the dependence on the
reaction rate diminishes for frozen and equilibrium conditions.

There are some notable differences between the radial profiles for the flow around a
sphere and a cylinder. For the cylinder, especially for low reaction rates, the degree of
dissociation and the density are significantly larger than for the sphere (see figures 6
and 7). Not only does the magnitude of these values differ, but also their qualitative
behaviour. Whereas for the sphere for low reaction rates behind the shock, the degree
of dissociation and the density show a moderate rise, for the cylinder much larger
gradients are obvious. With increasing reaction rate, the differences between the radial
profiles diminish. Also, the tangential velocity gradient in the case of a cylinder shows
a quite different behaviour from that for a sphere (see figure 8). Its absolute magnitude
is less, which results in a larger shock stand-off distance. But furthermore, near the
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body its shape differs significantly from that for a sphere. For a small reaction rate
parameter, a local minimum of the tangential velocity gradient occurs close to the
stagnation point. As expected, the scaled shock stand-off distance for a cylinder show
qualitatively the same behaviour as for the sphere (see figure 9), but, as is well known,
with a more than doubled stand-off distance.

The method described can easily be extended to take into account the influence of
a finite free-stream dissociation level. This case is of special interest for evaluating
experimental results obtained in high-enthalpy facilities like shock tunnels for which
freezing of the nozzle flow is of great concern. Fortunately, to discuss the influence
of a finite free-stream dissociation it is sufficient to consider the two limiting cases
of frozen and equilibrium flow. These are described with sufficient accuracy by the
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analytical solution given by Olivier (2000)

�̃ =

{
ρs

ρ∞

√
1

4

[
1 +

(
∂ū

∂φ

)

b

]2
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·
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3

(
∂ū

∂φ

)

b

− 2
ρs

ρb

ρ∞

ρs

)−1

. (3.3)

In this relation the free-stream dissociation influences the density jump across the
shock which is given for an ideal dissociating gas for the hypersonic limit by

ρs

ρ∞
=

7 + α∞

1 + α∞
. (3.4)

The free-stream dissociation causes a reduced density jump across the shock
resulting in a bigger stand-off distance. Relations (3.3) and (3.4) allow evalution
of the influence of the free-stream dissociation on the stand-off distance for frozen
flow, ρs = ρb, and for equilibrium. In the latter case, the value of the density ratio
ρs/ρb is prescribed as a parameter. Figure 10 shows the stand-off distance in the
case of free-stream dissociation scaled with the stand-off distance for no free-stream
dissociation. For this ratio of stand-off distances the difference between frozen and
equilibrium flow is in general not very large but grows with increasing dissociation
level. It is interesting to note that for the stand-off ratio

�̃

�̃α∞=0

=
�̄

�̄α∞=0

ρs/ρ∞

(ρs/ρ∞)α∞=0

(3.5)

the influence of the free-stream dissociation is very weak. But for the geometrical
stand-off distance ratio �̄/�̄α∞ = 0 there is a nearly linear dependence on the free-
stream dissociation level. For a free-stream dissociation of e.g. 20 % the stand-off
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distance is about 16 % larger than for the case without pre-dissociation, because
according to (3.4) the free-stream dissociation leads to a smaller density jump across
the shock. This shows clearly that the influence of a possible free-stream dissociation
in high-enthalpy wind tunnels must be considered, especially comparing experimental
and numerical results or data obtained in different wind tunnels.

4. Physical and numerical model for detailed flow field study
It is generally assumed that the shock detachment distance only weakly depends

on the physical model used to describe real gas effects, in particular vibrational
and chemical non-equilibrium. Thus, a model of the Lighthill type (Freeman 1958)
described above may be sufficient if a precision of about 10 % is sufficient. In the
same way, the well-known model of Park (1989a, b), also simple to implement, can be
sufficient to yield the same magnitude of accuracy. This was supported by relatively old
measurements (Lobb 1964) which partially suffered from experimental shortcomings.
However, recent measurements carried out with sophisticated techniques of
diagnostics allowed results of higher precision of about 5 % (Furudate, Nonaka &
Sawada to be obtained 1999; Hashimoto 2003). These experimental results lead to the
conclusion that the values of the shock detachment distances measured on hemispher-
ical models are larger than those deduced from Park’s model and thus closer to the
frozen case. These measurements also show that the older values previously mentioned
are smaller and that the difference can be ascribed to an insufficient purity of the test
gas used in these early experiments. These considerations lead to the conclusion that
to achieve a high accuracy a more realistic physical model must be used for a complete
calculation of the hypersonic flow around axisymmetrical bodies and, in particular,
of the shock detachment distance in front of these bodies. This model must also take
into account the simultaneous influence of the vibrational excitation and the chemical
reactions as well as their interaction. These phenomena are largely present under the
experimental conditions referred to above, i.e. for enthalpies ranging between 5 and
15 MJ kg−1. For simplicity and clarity, first the case of dissociation of pure diatomic
gases is considered and thereafter the case of complex gases and gas mixtures.

4.1. Physical model of non-equilibrium flow

4.1.1. Pure diatomic gases

For a pure diatomic gas of species A which is partially dissociated, the reactions
considered are the following:

A2 + A2 � A2 + A + A, (4.1)

A2 + A � A + A + A. (4.2)

Constants KD1 and KD2, respectively, are the rate constants of the dissociation
reactions (4.1) and (4.2), KR1 and KR2 the rate constants of the corresponding
recombination reactions. To this set of reactions, one must add the ‘reactions’
of vibrational excitation and de-excitation of molecules A2 for which one single
relaxation time τv will be considered.

Thus, considering atoms A and vibrationally excited molecules A2 in non-
equilibrium situations, the Boltzmann equation for the distribution function of the
molecules fi may be written by splitting the collisional term J into three parts: Jtr

that includes the translation–translation exchanges (elastic terms) and translation–
rotation exchanges, Jv that includes all vibrational exchanges and Jc that includes
the chemical exchanges with dissociation and recombination terms JD and JR ,
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respectively: Jc = JD − JR . It is assumed that τtr � τv and τc, where hese symbols
represent the characteristic relaxation times of the corresponding collisional terms.
This is valid for most high-temperature flows in which τv generally remains smaller
than τc, such as for nitrogen, or comparable, such as for high-temperature oxygen.
Thus, for molecules at level i, including a rotational level ir and a vibrational level iv ,

dfip

dt
= Jtrp + Jvp + Jcp. (4.3)

For atoms, (4.3) simplifies to

dfq

dt
= Jtq + Jcq, (4.4)

where the indices p and q , respectively, denote molecules and atoms. If (4.3) and
(4.4) are multiplied by their general collisional invariants, then integrated on the
velocity space, summed over the rotational and vibrational levels and finally added,
one obtains the three usual global conservation equations for mass, momentum and
energy governing the mixture consisting of A and A2:

∂ρ

∂t
+

∂ρV
∂ r

= 0, (4.5)

ρ
dV
dt

= −∂p

∂ r
− ∂τ

∂ r
, (4.6)

ρ
dh

dt
=

dp

dt
− ∂q

∂ r
− τ :

∂V
∂ r

, (4.7)

where p, ρ, V , h, τ , q, respectively, represent the pressure, density, velocity, enthalpy,
stress tensor and heat flux of the mixture.

In order to complete these equations, the vibrational energy conservation equation
and species conservation equations for the molecules and atoms are obtained by
multiplying (4.3) and (4.4), respectively, by εiv , the vibrational energy of level iv , and
the molecular mass mp . As before, these equations are integrated and summed over
the internal levels. For a more detailed analysis, one can consider the balance of
molecules at each vibrational level, but this is not necessary for a global view. In the
same way, the assumption of the harmonic oscillator model may be retained. These
equations are as follows:

∂ρp

∂t
+

∂ρpV p

∂ r
= ẇp, (4.8)

ρp

devp

dt
+

∂qvp

∂ r
= ėvp + ẇvp, (4.9)

with

ėv =
ev − ev

τv

and τ−1
v =

∑

m=p,q

ξmτ−1
pm ,

where ẇp and ẇvp are source terms for the mass and the vibrational energy of species
p(A2) due to reactive collisions; ev and qv describe the vibrational energy and the
corresponding heat flux, ev the equilibrium vibrational energy and ėv the vibrational
energy production due to non-reactive collisions. Furthermore, the mass production
term is given by

ẇp

Mp

=
ẇRp − ẇDp

Mp

=
(
KR1XpX2

q + KR2X
3
q

)
−

(
KD1X

2
p + KD2XpXq

)
(4.10)
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and the production term for the vibrational energy by

ẇv = (ev − evR)ẇR − (ev − evD)ẇD , (4.11)

where evR and evD are the vibrational energies gained or lost per recombination and
dissociation reaction, respectively. X is the molar concentration. The rate constants
are determined by

KD =
∑

ip

kDipξip (4.12)

with ξip = nip/np = Xip/Xp .
The expressions for KR, KD , evR and evD have to be determined to close the complete

set of equations, and it is the same for all transport terms (Vp,τ, q) appearing in the
conservation equations (4.5), (4.6) and (4.7). These may be obtained from a generalized
Chapman–Enskog (GCE) procedure summarized below (Kogan, Galkin & Makashev
1979; Brun, Villa & Meolans 1984).

Thus, assuming as usual that τv remains smaller than τc and much smaller than
the reference flow time δ, fip is expanded in a series of the ‘small’ parameter ε = τv/δ.
Excluding the regions where steep gradients prevail, the method applies to vibrational
and chemical non-equilibrium zones up to complete equilibrium. Truncating the
expansion to the first order, the Boltzmann equation (4.3) is replaced by the following
system giving successively the zeroth- and first-order expressions for fip:

J 0
trvp = 0, (4.13)

df 0
ip

dt
= J 1

trvp + J 0
cp + J 1

cp. (4.14)

A similar but simpler system is obtained for fiq .
Equation (4.13) gives a zeroth-order solution for f 0

ip in translational–rotational–
vibrational equilibrium and in chemical non-equilibrium. Then, the first-order solution
deduced from (4.14) may be written f 1

ip = f 0
ip(1 +ϕip), where the perturbation ϕip takes

into account translational–rotational non-equilibrium which is the origin of most
transport terms, vibrational non-equilibrium and interactions between vibrational
and chemical non-equilibrium. Thus, ϕip may be written in the following general
form:

ϕip = Ac
∂T

∂ r
+ Bcc

∂V
∂ r

+ D
∂V
∂ r

+ G + H c
∂ξ

∂ r
, (4.15)

where Y = A, B, D, G, H are scalar functions related to conductivity, shear and bulk
viscosities, relaxation pressure and diffusion, respectively. Each Y term is expanded
in Sonine–Wang Chang–Uhlenbeck polynomials

Y =
∑

m,n,p

ymnpSm
t P n

r P p
v (4.16)

with Y = A, B, D, G, H . Only zeroth- and first-order terms are retained in the
expansion (4.16), i.e. y000, y100, y010, y001, where each subscript corresponds to the order
of expansion for translation, rotation and vibration, respectively. These terms depend
on collisional integrals, generally well-known with various degrees of approximation.
In this way, the transport coefficients are deduced from the corresponding expressions.

On the other hand, it is easily verified that the non-equilibrium rate constants KD

and KR defined by (4.12) are linear functions of D and G terms, and this is the
same for the non-equilibrium vibrational energy ev . Eliminating these terms from the
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functions, explicit relations between the rate constants and the vibrational energy are
obtained. Thus, we find for KD (Belouaggadia & Brun 1998)

KD − K̄D

K̄D

=

(
ev − ēv

ēv

)(
evD − ēv

ēv

)
, (4.17)

where evD represents the vibrational energy lost per dissociation of each molecule
and K̄D is the Arrhenius rate constant of the reaction considered with K̄D = K̄D(T ).
More details may be found in Belouaggadia & Brun (1998). The loss of vibrational
energy per dissociation of each molecule may be computed from its definition, i.e.

evD =

∑

iv

∫
JD(εiv /m) dc

∑

iv

∫
JD dc

. (4.18)

An oscillator model including dissociation is needed for computing evD . Thus, if the
equiprobable, i.e. non-preferential, model is used to determine the specific dissociation
rate constants KDip , at the zeroth order of the distribution function (evD = ēvD) we
find a value for evD close to 0.5eD for the harmonic oscillator model and close to
0.4eD for the anharmonic one. For example, evD for N2 is 0.44eD and for O2 is 0.42eD .
At the first order of the distribution function, a more complex expression is obtained,
but an approximate value of 0.3eD can be used instead of that complete expression.
This value is close to that generally recommended (Park 1990).

For the recombination parameter evR , it is assumed that evR = ēvD for the backward
reaction (4.1) and KR = K̄R for the reaction (4.2), which means that the recombination
involving only atomic species is not influenced by the vibrational state of the
recombined molecules. This is a commonly used assumption (Treanor & Marrone
1962). Finally, the Navier–Stokes equations completed by (4.8) and (4.9) have to
be solved. In these equations, Arrhenius rate constants are taken from Park (1985)
and vibrational relaxation times from Millikan & White (1969). The transport terms,
rather than being directly calculated are written as functions of the viscosity and of
the non-dimensional numbers, namely the frozen Prandtl, the Lewis and vibrational
numbers. These quantities are weakly sensitive to non-equilibrium conditions (Brun
1988).

4.1.2. Extension to gas mixtures

In the case of complex gases or gas mixtures, many reactions may take place. The
general equations (4.7) to (4.9) remain valid of course, but the source terms are to be
deduced from the set of s chemical reactions of the following type:

∑

p

ν ′
psAp �

∑

p

ν ′′
psAp. (4.19)

The chemical and vibrational energy source terms are given by

ẇp =
∑

s

(ẇpf s − ẇpbs) =
∑

s

Mp

(
ν∗

ps − ν ′
ps

) (
Kf s

∏
N

ν ′
ps

p − Kbs

∏
N

ν ′′
ps

p

)
(4.20)

and

ẇVp =
∑

s

[(
eVp − eVpf s

)
ẇpf s −

(
eVp − eVpbs

)
ẇpbs

]
. (4.21)
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As in the case of dissociating pure gases, the expressions for Kf s , Kbs , eVpf s and eVpbs

have to be determined in order to close the complete set of equations (4.7) to (4.9).
In particular, the rate constants Ks may be written in the form

Ks = ZsK̄s, (4.22)

where K̄s represents the Arrhenius rate constant of the reaction s, and

Zs =

(
evp − ēvp

ēvp

)(
evps − ēvp

ēvp

)
. (4.23)

Among the reactions described by (4.19), are dissociation and recombination as
in the case of pure gases, but also various exchange reactions for which terms like
evps , the vibrational energy of the species p lost per forward or backward reaction,
must be evaluated. They generally represent a fraction of the activation energy, also
depending on the oscillator model (Belouaggadia & Brun 2006).

In the case of complex mixtures, it is necessary to take into account the VV-
transitions between different molecular components (Stupochenko et al 1967), even if
the harmonic oscillator model is retained for the TV-transitions (Millikan & White
1969). Taking this into account, the Navier–Stokes equations are written in a way
similar to the case of pure gases (Brun 1991; Pascal & Brun 1993). They are completed
by species conservation equations and vibrational relaxation equations modified as
specified above. This complete set of equations is solved for the geometry and flow
conditions considered.

5. Numerical simulation
In a cylindrical coordinate system (x, y) the governing equations describing the

unsteady viscous flow of the non-equilibrium mixture (A, A2) as defined above, may
be expressed in the following vectorial form:

∂U
∂t

+
∂ F
∂x

+
∂G
∂y

+ H = Ω, (5.1)

where the conservative vector U includes the unknown quantities

U = (ρp, ρq, ρu, ρv, ρe, ρpevp).

F and G are the vectors that include the convective and diffusive fluxes in each
direction x and y. The vector H includes the axisymmetrical terms of the equations,
and Ω contains the chemical and vibrational energy source terms.

The unsteady equations (5.1) have to be integrated for the flow field considered,
starting from initial conditions and taking into account the usual boundary conditions.
In this way, a time-eveloping solution is obtained until the required steady state is
achieved. The numerical method is carried out on a rectangular plane ξ, η, derived
from the physical plane x, y by a suitable transformation. The system of equations
(5.1) is solved by an implicit finite difference scheme. For each node (i, j ) at the time
step (n + 1)�t , the system may be written in the following form:

U (n+1) − U (n)

�t
+

D

�ξ
(Fe + Fd)(n+1) +

D

�η
(Ge + Gd)(n+1) + H (n+1) = Ω (n+1), (5.2)

where Fe and Ge represent the Eulerian convective fluxes, Fd and Gd include transport
terms and D/� are finite difference operators. Each vector Φ of (5.2) is linearized in
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the form

Φ (n+1) = Φ (n) +

(
∂Φ

∂U

)n (
U (n+1) − Un

)
, (5.3)

where ∂Φ/∂U is the Jacobian matrix. Then, having split Fe and Ge into a positive
and a negative part, the system (5.2) is written in the form

[
I + �t

(
D+ A−

�ξ
+

D− A+

�ξ
+

D2 Sd

�ξ 2
+

D+ B−

�η
+

D− B+

�η
+

D2 Rd

�η2
+ K + L

)]

×
(
U (n+1) − Un

)
= �U (n), (5.4)

where

�U (n) = −�t

(
DF(n)

�ξ
+

DG(n)

�η
+ H (n) − Ω (n)

)
. (5.5)

The symbols D, D+, and D− denote central, forward and backward difference
operators, respectively. A−, A+, Sd , B−, B+, Rd , K and L are the Jacobian matrices,
respectively, of F−

e , F+
e , Fd , G−

e , G+
e , Gd , H and Ω . After discretization, the system

may be written as a linear system with a pentadiagonal matrix. At each time step,
a predictor–corrector scheme is used and the system is solved by a Gauss–Seidel
line relaxation method (MacCormack & Candler 1989) with alternating sweeps in
backward and forward in direction ξ .

A few thousand grid points with varying grid spacing are generally required for
various meshes (typically 60 × 80 grid points), with �xmin ≈ 10−5 m and �ymin ≈
10−8 m. The time step is calculated from a stability criterion based on the CFL
criterion (MacCormack & Baldwin 1975) where the implicit method allows the use
of CFL numbers ranging from 1 to 60. Close to the symmetry axis, the mesh size is
progressively decreased in order to determine the shock position with high accuracy.
Moreover, the ‘numerical thickness’ of the shock is estimated by using the Prandtl
definition, i.e.

δPr = (ρb − ρa) /

(
dρ

dx

)

max

or δPr = (Tb − Ta) /

(
dT

dx

)

max

. (5.6)

This thickness may be considered as the maximum error of the shock position,
assumed to be located at the position of maximum slope of the density ρ(x) or
temperature T (x) distribution along the axis of symmetry. The error in the shock
position estimated in this way amounts to less than 5 %.

During the first phase of the simulation the solution shows an unsteady behaviour
(see figure 11). But after a few hundred time steps the solution becomes stationary
and the value for the shock stand-off distance can be determined.

The grid dependence has been studied for three meshes with 50 × 50, 60 × 60 and
80 × 80 grid points. For the coarse mesh the stand-off distance normalized with the
sphere radius is 0.131 and for the last two meshes is 0.1309. Therefore, for the problem
considered meshes with 60 × 60 grid points or even more can be regarded as yielding
a mesh-independent solution.

6. Results and comments
Any new modelling of physical phenomena must be compared to other existing

models and validated with reliable data. Thus, computations of the whole flow field
around hemispherical bodies using the model presented here have been performed,
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Figure 11. Evolution of the shock stand-off distance as function of the number of time
steps, ρs/ρb = 0.7, frozen flow
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Figure 12. Comparison of shock stand-off distances for a sphere.

and the resulting values for the shock stand-off distances are compared to the results
of the theoretical model described in § 2 and to recent experimental measurements.

These experimental results have been obtained in shock tunnels and gun tunnels
working in non-equilibrium conditions and with high stagnation enthalpies. Excluding
the oldest experiments for the reasons previously described, the most significant
experiments have been conducted by Wen & Hornung (1995), Nonaka (2000) and
Hashimoto (2003).

6.1. Comparison with the theoretical model

The most important result of the theoretical model described in § 2 is the universal
representation of the non-dimensional shock stand-off distance as a function of a
rate parameter and of the density ratio ρs/ρb. This behaviour is also found in the
numerical simulation. Figures 12 and 13 show a comparison of the shock stand-
off distance �̃ between the numerical results obtained with the present model and
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Figure 13. Comparison of shock stand-off distances for a cylinder.

the theoretical results of § 2 for spherical and cylindrical bodies, respectively. Pure
nitrogen has been used as gas for the numerical simulation.

For the hemispherical case (figure 12), the discrepancies between the two models,
though not important, increase with the decrease of the density ratio, i.e. with
increasing dissociation, and the maximum deviation is close to 7 %. The difference
is reduced to less than 2 % if, in the present computation, the Arrhenius values for
the rate constants are used, the relaxation equation is suppressed, and the vibrational
energy is taken as half of the local equilibrium value. In this way the current
model is as far as possible adapted to Lighthill’s model (Freeman 1958). This result,
therefore, shows that the main source of disagreement comes from the use of the ideal
dissociating gas assumption in the theoretical model. Furthermore, it is important
to note that the approximate theory of Wen & Hornung gives values close to those
given by the present model with a deviation of about 3 %.

For the cylindrical case (figure 13), the difference between the models is generally
similar to the spherical case, but the discrepancies do not increase with decreasing
density ratio ρs/ρb. The difference between the two models, however, as previously,
would become negligible if a more realistic physical model were included in the
theoretical model. However, introducing more realistic and therefore more complex
models into the theoretical approach would significantly reduce the possibility of
describing the most important physical phenomena by analytical expressions extracted
from the set of governing equations. From another point of view, for the cylindrical
case, the much larger shock stand-off distance makes it regrettable that, to our
knowledge, so few experimental results are available. The larger shock stand-off
distance at the cylinder reduces the relative error in the measurements.

6.2. Comparison with Wen & Hornung’s experiments

In these experiments, the shock stand-off distance is measured by a conventional
interferometric method in front of spheres of 1 to 6 in. in diameter which are placed
at the exit of a contoured nozzle with 300 mm exit diameter. The experiments have
been performed in a free piston shock tunnel capable of producing flows of nitrogen,
air and carbon dioxide up to stagnation enthalpies of 25 M J kg−1. The measured
values of the non-dimensional shock stand-off distance are given as a function of the
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Figure 14. Comparison of measured stand-off distances, symbols (Wen & Hornung 1995),
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Figure 15. As figure 14 but for carbon dioxide.

general reaction rate parameter

Ω̃ =

(
dρ

dt

)

s

D

ρsu∞

which is defined as part of an approximate theory (Wen & Hornung 1995). The values
of the shock stand-off distance found for various total enthalpies are represented in
figures 14 and 15, respectively, for air and carbon dioxide flows and compared with
values given by the present model.

For the computation of the air flow, as usual a mixture of five species is considered
(N2, O2, NO, N, O). In the same way, 15 dissociation and recombination reactions
of the molecular species and two exchange reactions involving NO are considered,
so that 34 reactions are taken into account with rate constants given by (4.23).
However, six recombination reactions involving atoms only cannot be described by
the present model. This is consistent with the hypothesis, usually assumed, of the
independence of these reactions from the vibrational distribution of the recombined
molecules (Park 1990). Arrhenius rate constants are taken from Park (1989a), and



192 N. Belouaggadia, H. Olivier and R. Brun

Frozen
0.15

0.14

0.13

0.12

0.11

0.10

0.09

Equilibrium
P = 20 mmHg
P = 2.5 mmHg

0.08
2000 2500 3000

Flight velocity (m s–1)

3500 4000

Park's model

Present
model

Δ
R

Figure 16. Comparison between measured and computed shock stand-off distance,
ρ∞R = 1 × 10−4 kg m−2, �: experimental values.

TV and VV relaxation times, respectively, from Millikan & White (1969) and from
Stupochenko et al (1967). For the computation of the carbon dioxide flow, five
species are considered (CO2, O2, CO, C, O) and 12 reactions are taken into account.
Arrhenius rate constants and TV relaxation rates are taken from Mazoue, Chikhaoui
& Brun (1994). As expected, the non-equilibrium effects are more important for
carbon dioxide, because of its low dissociation energy.

Looking at the results given by these experiments and the present model in figures 14
and 15, the agreement seems to be excellent within 5 %, especially when considering
the uncertainties of 4 % to 9 % given by the authors for the nominal total enthalpies
h0, which is indirectly determined from measurements of the shock velocity or the
stagnation heat flux.

6.3. Comparison with Nonaka’s experiments

These experiments have been performed in a ballistic range with hemispherical models
fired into air as test gas at flight velocities from 5000 to 20 000 m s−1. The nose radii
of the models varied from 1 to 15 mm. The shock stand-off distance was measured by
shadow and schlieren techniques with an accuracy claimed by the authors of better
than 5 %. The experimental shock stand-off distance values, normalized by the nose
radius, are given for different values of the scaling parameter ρ∞R equal to 1 × 10−4,
2 × 10−4 and 4 × 10−4 kg m2, respectively, in figures 16, 17 and 18.

The upper curves represent the well-known solutions previously obtained for frozen
flow, ρ∞R = 0, and the solution for non-equilibrium flow. The lower two curves
correspond to the equilibrium solution, ρ∞R = ∞, obtained for two different ambient
pressures. The domain between these two sets of curves represents the non-equilibrium
region for finite values of the parameter ρ∞R.

It is clear that the present experimental data exhibit non-equilibrium effects which
become significant with increasing flight velocity while keeping ρ∞R constant. In the
same way as ρ∞R increases, the shock stand-off distance approaches its equilibrium
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Figure 17. Comparison between measured and computed shock stand-off distance,
as figure 16 but for ρ∞R = 2 × 10−4 kg m−2.
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Figure 18. Comparison between measured and computed shock stand-off distance,
as figure 16 but for ρ∞R = 4 × 10−4 kg m−2.

value. As previously reported and discussed, these results are closer to the frozen case
than older data apparently obtained in a contaminated test gas.

A comparison with calculations using the two-temperature model derived by
Park (1989a, b) is also presented in the same figures. As clearly seen, a fair agreement
is obtained for nearly frozen flow, i.e. low ρ∞R values, and for low velocities. As
expected, the agreement is better for nearly equilibrium conditions. However, the
computed values gradually depart from the experimental ones as the flight velocity
increases and therefore excitation of non-equilibrium effects takes place. For these
flow conditions Park’s model underestimates the shock stand-off distance. This may
be attributed to a relatively slow chemistry associated with an important vibrational
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Flow quantities Condition 1 Condition 2

Nozzle exit conditions:
Mach number 7.25 6.89
Velocity [m s−1] 4120 2780
Temperature [K] 420 310
Tv (N2) 2120 1900
Tv (O2) 900 800

Molar concentrations:
N2 0.73 0.70
O2 0.18 0.13
NO 0.08 0.13
O 0.01 0.04
N 0.00 0.00

Table 1. Computed flow conditions at the nozzle exit of Hashimoto’s experiments.

relaxation, resulting from the moderate stagnation enthalpies of these experiments
which are lower than those of Wen & Hornung’s experiments.

The model presented in this paper, which takes this coupling into account, gives
values for the shock stand-off distance in good agreement with the experimental data
in the whole non-equilibrium regime for the three values of ρ∞R considered. The
discrepancies between the experimental and numerical results remain less than 4 %.

6.4. Comparison with Hashimoto’s experiments

The experiments have been performed with hemispherical bodies with radii varying
from 12.5 to 5 mm placed at the exit of a conical nozzle with 130 mm exit diameter of
a free piston shock tunnel allowing total enthalpies up to 15 M J kg−1. Measurements
of the shock stand-off distance have been made by holographic interferometry for
two flow conditions 1 and 2 listed in table 1 close to 10 and 5 M J kg−1, respectively.

For comparison with the experimental results, first it was necessary to compute
the nozzle flow employing the present model, before computing the flow around the
hemisperical bodies. The corresponding flow quantities at the nozzle exit are listed in
table 1. As expected, for the nozzle flow a freezing of the mass concentrations and
temperatures is observed. Figure 19 shows an example of the temperature evolution
along the stagnation streamline of a hemispherical model. It is obvious that vibrational
non-equilibrium effects in the flow around the body are strongly reduced because of
the freezing of these quantities at a rather high level in the free stream of the nozzle.
The same holds, of course, for the evolution of the species concentrations.

The shock detachment distances are found from the numerical simulations, and
a comparison with corresponding values determined by interferometry is given in
table 2. The agreement is fair since the discrepancies are about 2 % to 5 % which
corresponds to the experimental uncertainties. The maximum discrepancy is observed
for the largest sphere radius (50 mm). In this case, interactions between the detached
bow shock and the boundary layer caused by the nozzle flow might be of importance.
Effects of the expanding flow caused by the conical nozzle shape could also be of
importance, but at high Mach numbers in a quasi-frozen flow, as for the present
case, these effects have negligible influence on the shock stand-off distance (Hayes &
Probstein 1959).

Finally, comparing the present values to those for the frozen case, a difference of
only about 10 % is observed and the shock stand-off distance does not significantly
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R [mm] �/R (frozen) �/R (non-equilibrium) �/R (measured)

Condition 1:
25 0.139 0.131 0.129
50 0.139 0.125 0.121

Condition 2:
12.5 0.138 0.130 0.136
25 0.138 0.127 0.130
50 0.138 0.124 0.120

Table 2. Shock stand-off distances from numerical simulations and Hashimoto’s
experimental data.
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Figure 19. Temperature profiles along the stagnation line, Condition 1.

depend on the chemical conditions characterized by the flow conditions 1 and 2. This
is also caused by the high Mach number and the quasi-frozen free stream. On the
other hand, as for the case of the ballistic range, the two-temperature model (Park
1989a, b) underestimates the shock stand-off distance by about 10 % which is more
than the uncertainty in the measurements and in the present computations which
amounts to 5 %.

7. Conclusions
A theoretical model based on a quasi one-dimensional approach has been presented

which allows determination of the shock stand-off distance on spheres and cylinders.
A unique solution is obtained for the whole reactive flow regime ranging from frozen
to equilibrium conditions. In spite of the use of the simple ideal dissociating gas model,
it reveals the governing physical mechanisms of the hypersonic stagnation flow on
blunt bodies. In a systematic manner it allows the study of the influence of the
most important parameters on the shock stand-off distance, such as the density ratio
between shock and body, the reaction rate parameter, the free-stream dissociation
level, etc. A highly detailed solution of the flow field is obtained by the physical–
numerical method described in the second part of the paper. This method, based on
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the Chapman–Enskog method, allows to consideration of complex gas mixtures in
thermal and chemical non-equilibrium including coupling between thermal excitation
and chemistry. Whereas the theoretical method of the first part describes the main
dependences of the most important parameters, the numerical solution allows a
detailed analysis of the whole flow field. The values of the shock stand-off distance on
hemispherical bodies computed by the present physical–numerical method are close
to the experimental values, within less than 5 % which roughly corresponds to the
experimental uncertainties. The same holds for the comparison with the results of
the theoretical approach, when similar assumptions are made for the physical model
used in both methods, which provides a reciprocal validation of these methods.

REFERENCES

Belouaggadia, N. & Brun, R. 1998 Chemical rate constants in non-equilibrium flows. J. Therm.
Heat Transfer 12, 482–488.

Belouaggadia, N. & Brun, R. 2006 Statistical model for vibration-chemical reaction interaction:
Extension to gas mixtures. J. Therm. Heat Transfer 20, 148–150.

Brun, R., Villa, M. P. & Meolans, J. G. 1984 Generalised transport terms in vibrationally relaxing
flows. In Rarefied Gas Dynamics (ed. M. Oguchi). pp. 593–599. University of Tokyo Press.

Brun, R. 1988 Transport properties in reactive gas flows. AIAA Paper 88-2655.

Brun, R. 1991 Transport phenomena in relaxing gas mixtures: Models and applications. In Rarefied
Gas Dynamics (ed. A. E. Beylich). pp. 379–390. VCH, Weinheim.

Freeman, N. C. 1958 Non-equilibrium flow of an ideal dissociating gas. J. Fluid Mech. 4, 407–425.

Furudate, M., Nonaka, S. & Sawada, K. 1999 Behavior of two-temperature model in intermediate
hypersonic regime. J. Therm. Heat Transfer 13, 424–430.

Garr, L. J. & Marrone, P. V. 1963 Inviscid, non-equilibrium flow behind bow and normal shock
waves, part II. Cornell Aeron. Lab. Rep. QM-1626-A-12(II).

Hall, J. G., Eschenroeder, A. Q. & Marrone, P. V. 1962 Blunt-nose inviscid airflows with coupled
non-equilibrium processes. J. Aero Space Sci. 29, 1038–1051.

Hashimoto, T. 2003 Analytical and experimental study of hypersonic nozzle flows in free piston
shock tunnel. PhD Thesis AOTD1606, Tohoku University, Japan.

Hayes, W. D. & Probstein, R. F. 1959 Hypersonic Inviscid Flow. Academic.

Hornung, H. G. 1972 Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders.
J. Fluid Mech. 53, 149–176.

Kogan, M. N., Galkin, V. S. & Makashev, N. K. 1979 Generalised Chapman-Enskog method:
Derivation of the non-equilibrium gasdynamics equations. In Rarefied Gas Dynamics (ed. R.
Campargue). pp. 693–734. CEA Paris.

Lick, W. 1960 Inviscid flow of a reacting mixture of gases around a blunt body. J. Fluid Mech. 7,
128–144.

Lin, S. C. & Shen, S. F. 1951 An analytical determination of the flow behind a symmetrical curved
shock in a uniform stream. NACA Tech. Note 2506.

Lobb, R. K. 1964 Experimental measurement of shock detachment distance on spheres fired in air
at hypervelocities. In The High Temperature Aspects of Hypersonic Flow (ed. W. C. Nelson).
pp. 519–527. Pergamon.

MacCormack, R. W. & Baldwin, B. S. 1975 A numerical method for solving the Navier-Stokes
equations with application to shock-boundary interactions. AIAA Paper 75-1.

MacCormack, R. W. & Candler, G. 1989 The solution of the Navier-Stokes equations by Gauss-
Seidel line relaxation. Computers Fluids 17, 135–155.

Mazoue, F., Chikhaoui, A. & Brun, R. 1994 Non-equilibrium species concentration behind a
normal shock wave in CO2. In Aerothermochemistry of Spacecraft and Associated Hypersonic
Flows. Jouve, Paris.

Millikan, R. C. & White, D. R. 1969 Systematics of vibrational relaxation. J. Chem. Phys. 39,
3209–3213.

Nonaka, S. 2000 Experimental and numerical study on hypersonic flows in ballistic range. Dept. of
Aeronautics and Space Engineering, Tohoku University, Sendai, Japan.



Shock stand-off distance in non-equilibrium flows 197

Olivier, H. 2000 A theoretical model for the shock stand-off distance in frozen and equilibrium
flow. J. Fluid Mech. 413, 345–353.

Park, C. 1985 On convergence of computation of chemically reacting flows. AIAA Paper 85-0247.

Park, C. 1989a A review of reaction rates in high temperature air. AIAA Paper 89-1740.

Park, C. 1989b Assessment of two temperature kinetic model for ionizing air. J. Therm. Heat
Transfer 3, 233–244.

Park, C. 1990 Review of finite-rate chemistry models for air dissociation and ionisation. In Molecular
Physics and Hypersonic Flows (ed. M. Capitelli). pp. 581–596. NATO-ASI Series, Kluwer.

Pascal, S. & Brun, R. 1993 Tranport properties in non-equilibrium gas mixtures. Phys. Rev. 44,
3251–3267.

Stupochenko, Y. V., Losev, S. A. & Osipov, A. I. 1967 Relaxation in Shock Waves. Springer.

Treanor, C. E. & Marrone, P. V. 1962 Effect of dissociation on the rate of vibrational relaxation.
Phys. Fluids 5, 1022–1027.

Van Dyke, M. D. 1958 The supersonic blunt body problem - review and extension. J. Aero Space
Sci. 25, 485–496.

Wen, C. Y. & Hornung, H. G. 1995 Non-equilibrium dissociating flow over spheres. J. Fluid Mech.
299, 389–405.

Zlotnick, M. & Newman, D. J. 1957 Theoretical calculation of the flow on blunt-nosed
axisymmetric bodies in a hypersonic stream. Avco Mfg. Corp. Lawrence, MA, Tech. Rep.
2-57-29.




